Lab3003
  • FacultyAlgorithmChallenge
  • README
  • Question Bank
  • Python Documentation
    • BetterMap
    • Board
    • Card
    • Circle
    • Deck
    • README.md
    • Guide For Bookmarklet
    • Hand
    • HashMap
    • Hist
    • Kangaroo
    • LinearMap
    • Markov
    • Point
    • PokerDeck
    • PokerHand
    • Rectangle
    • State
    • Test
    • ThinkPython
    • ThinkPython2
    • Time
    • Think Python
    • thinkpython
  • Files
  • Image Files
  • lab
    • InsertSortTDD
    • countingBits
    • cs3003mergeSortLectureGuideLine
    • index_min
    • insort
    • One-line factorial function in Python
  • Manual for Python Lab
    • COURSE OBJECTIVES
    • 1_timelines
    • FDPNotes
    • PC-2_Python
    • lab1-kgashok.py
    • Lab 10 :Matrix Multiplication
    • Lab 11: Programs that take command line arguments (word count)
    • Lab 11: Programs that take command line arguments
    • Lab 12: Compute the most frequently used words from the text file
    • Lab 12: Find the most frequent words in a text read from a file
    • Lab 12a: File content sorter
    • Lab 2: Find the square root of a number (Newton’s method)
    • Lab 3: Compute power of a number (Exponentiation)
    • Lab 3: Exponentiation (power of a number)
    • lab4-binaraysearch-anvar.py
    • Solution for Binary Search
    • lab4-joelanandraj-binarysearch.py
    • Lab 4: Linear and Binary Search
    • lab4-lin-anvar.py
    • Linear Searcher
    • Lab 5 : find n prime numbers
    • lab6-kgashok.py
    • lab7-kgashok.py
    • lab8-kgashok.py
    • Lab 8: Selection and Insertion sort using Python
    • Merge Sort
    • Quick Sort
    • labSheet
    • pc0
    • sortPythonic
    • Sorting
  • misc
    • Bookmarklets
    • Guide For Bookmarklet
    • pythonResources
    • FDP for Python
    • Agenda for Workshop
      • Agenda
  • notes
    • Problem Set
    • InsertSortTDD
    • MergeSort
    • cs3003-unit1-notes
    • cs3003-unit3
    • cs3003-unit4-examples
    • Unit 4 Lists, Tuples and Dictionaries
    • cs3003insertsortLectureGuide
    • cs3003mergeSortLectureGuideLine
    • Designing and Delivering Effective Lectures
    • histogram.py
    • selectSortLectureGuide
  • Sandbox to try ThinkPy2 code
    • Code from ThinkPython Github repository
  • Important Topics
    • 3003-syllabus
    • GE8161 PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY L T P C
    • Unit II Version 2
    • Unit IV material
    • UNIT III CONTROL FLOW, FUNCTIONS
    • Unit 1 Algorithm Problem Solving
    • Unit_V_Notes
    • UpdatedSyllabus
    • glossary
    • glossaryGeneration.py
    • importantTopics-kgashok
    • memCSV
    • Tower of Hanoi
    • Notes for Unit 2 - Illustrative programs
    • unit5-updated_notes
    • unit_1_notes
    • Unit 3 Control Flow Version 1
    • unit 3
      • UNIT III CONTROL FLOW, FUNCTIONS
    • unit_i_img
Powered by GitBook
On this page
  • OBJECTIVES:
  • UNIT I ALGORITHMIC PROBLEM SOLVING 9
  • UNIT II DATA, EXPRESSIONS, STATEMENTS 9
  • UNIT III CONTROL FLOW, FUNCTIONS 9
  • UNIT IV LISTS, TUPLES, DICTIONARIES 9
  • UNIT V FILES, MODULES, PACKAGES 9
  • OUTCOMES:
  1. Important Topics

UpdatedSyllabus

PreviousUnit_V_NotesNextglossary

Last updated 3 years ago

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING L T P C

3 0 0 3

OBJECTIVES:

  • To know the basics of algorithmic problem solving

  • To read and write simple Python programs.

  • To develop Python programs with conditionals and loops.

  • To define Python functions and call them.

  • To use Python data structures –- lists, tuples, dictionaries.

  • To do input/output with files in Python.

UNIT I ALGORITHMIC PROBLEM SOLVING 9

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find , insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA, EXPRESSIONS, STATEMENTS 9

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, .

UNIT III CONTROL FLOW, FUNCTIONS 9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES 9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: selection sort, insertion sort, mergesort, histogram.

UNIT V FILES, MODULES, PACKAGES 9

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file.

OUTCOMES:

Upon completion of the course, students will be able to

  • Develop algorithmic solutions to simple computational problems

  • Read, write, execute by hand simple Python programs.

  • Structure simple Python programs for solving problems.

  • Decompose a Python program into functions.

  • Represent compound data using Python lists, tuples, dictionaries.

  • Read and write data from/to files in Python Programs.

TOTAL : 45 PERIODS

TEXT BOOKS:

  1. Guido van Rossum and Fred L. Drake Jr, ―An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

REFERENCES:

  1. John V Guttag, ―Introduction to Computation and Programming Using Python‘‘, Revised and expanded Edition, MIT Press , 2013

  2. Robert Sedgewick, Kevin Wayne, Robert Dondero, ―Introduction to Programming in Python:

An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

  1. Timothy A. Budd, ―Exploring Python‖, Mc-Graw Hill Education (India) Private Ltd.,, 2015.

  2. Kenneth A. Lambert, ―Fundamentals of Python: First Programs‖, CENGAGE Learning, 2012.

  3. Charles Dierbach, ―Introduction to Computer Science using Python: A Computational Problem- Solving Focus, Wiley India Edition, 2013.

  4. Paul Gries, Jennifer Campbell and Jason Montojo, ―Practical Programming: An Introduction to

Computer Science using Python 3‖, Second edition, Pragmatic Programmers, LLC, 2013.

Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition, Updated for Python 3, Shroff/O‘Reilly Publishers, 2016

minimum in a list
distance between two points
Think Python V2 HTML